

Sustainability constraints for insect protein meal production

Radu Popa River Road Research (Buffalo, NY)

Cultured insects

Honey bees

Silk moths

Agriculture controllers (predators, parasites, pollinators) (ladybugs, caterpillar parasite wasps, bees)

Insects as food (FDA) (mealworms, crickets, locusts)

Insects as feed (AAFCO) (*Hermetia illucens*; BSF)

RIVERR

General benefits of insects

- High diversity (taxonomy & physiology)
- Fast growth
- Less space and water to produce (per kg of protein)
- Simpler but efficient immunology (AMPs) (w. Cecropins and Defensins)

Efficiency of food waste conversion

1,000 kg food waste 70-80% water

200-300 kg DW iMeal 13-14.5 % Protein 4-11 % Fat

40-75 kg pMeal 53-55 % Protein 8-12 % Fat 70 kg DW Frass

Land efficiency

Composting

 $1 \text{ mt/day } 200-700 \text{ m}^2$

Anaerobic digestion

 $1 \text{ mt/day } 25 \text{ m}^2$

BSF

1 mt/day 60 m² 4 acres for a city with 1 million people (@ 0.1 mt/person/year) 1 mt food waste => 40-75 kg pMeal 70 kg DW frass

Effects of fish meal substitution with BSF pMeal Red Drum Diets (*Sciaenops ocellatus*)

Take home slide Constrains to feed insects

1) Life cycle

2) Interaction w. other life forms

War w. fungi; mycoinsecticides vs. cecropin-AMPs (Stomoxyn)

Culture-specific parasites and pests

Limited knowledge about BSF diseases

3) Physiology

Heterotrophs => loss in CNP&E

Compete for feeds with other farm animals

Biomagnification of pesticides

4) Nutrition safety

Food-safe insects compete with us for quality feeds Sloppy eaters are cheaper ... but have limitations

5) Larvae feed quality6) Protein & fats quality7) Production costs

RIVER ROAD

Larvae feed quality

Feed composition

Organic nitrogen, carbohydrates, fats, vitamins, mycotoxins,

Feed pre-processing Refrigeration, Drying, Cooking, Fermentation.

Feed sources Some feeds will never make it toward feeds (manure, sewage sludge; pesticide-contaminated)

Some feeds are of secondary/local interest (post-consumer food wastes; leafy vegetables; yard clippings; algae)

Liquids - 70% of mass input

Industrial byproducts and commercial waste (fruit pulp, vegetable trimmings, wheyt, shelf-expired food, small-scale brewery and distillery waste)

Protein & fats quality

Fat content is very high and composition variable (lauric acid is high)

Digestibility

Protein/melanin complex. (2 heating steps) Maillard rxn. materials?

Hazards

Pathogens Microbial toxins Allergens

No industry standards for pMeal quality (feed sources and the drying method are the main causes of product variability)

Production costs

3.5-7.5 \$/kg BSF meal

1.5-1.7 \$/kg Fish meal

0.5-0.7 \$/kg Soy meal

Take home slide Strategies to survive the ride

- Legislation (tipping fees & carbon credits)
- Automation
- Diversify revenue (tipping fees, frass, fats, treats, polymers, AMPs)
- Split the industry

(eggs / larvae growing / biomass processing)

- High quality protein (solvent defatting, less denaturation)
- Low BSF protein addition to feeds

(to temper soy antinutritional factors or for AMPs)

- Target specialized feed markets

(e.g. predatory fish & customer-targeted feeds)

- BSF for waste reduction

(pig manure, spoiled food waste, industrial organic wastes

Thank you!

(any questions?)

Radu Popa (radu.o.popa@gmail.com) River Road Research (Buffalo, NY)

RIVER ROAD