What I learned while creating the Critical Dune Tool:

Opportunities for improving critical dune policy and management

Juliegh Bookout & Alan F. Arbogast Michigan State University

Jessica Moy & Bill Enslin Michigan State University RS&GIS Research and Outreach Services

Project Goals

Build a *spatial decision support tool* within Michigan MIV

Science

Provide a more comprehensive picture of the landscape

Technology Improve process & Increase efficiency

Research Question:

Can the MDEQ provide staff with a tool that enables them to exhaust fewer resources in the field, while providing them with more site information?

Implications for the MDEQ

- Quickly and efficiently gather information needed during the permit process
- · Provide additional site knowledge to the agent
- GIS can act as a permanent database of sitespecific measures and applicant information

Map of the Three Field Sites selected by the Project Team

Critical Dune Tool Design Reviewed...

the application and site inspection form Solicited...

feedback from MDEQ agents Evaluated...

digital data sources/quality

Designed

the tool to mimic this information w/additional information about the site

Critical Dune Tool Design

X

🛢 Critical Dune Site Assessment

Applicantion	Site	Soils	Topography	
DEM Elevation (30-meter poir	nts)	LiDAR Elevation (2-meter contour)		
DEM Elevation: 682 feet	Aspect: East	LiDAR Elevation: 597 feet	Aspect: East	
	Slope: 15 - 22 %		Slope: 40 - 59 %	
DEM Elevation (within 200 feet)	DEM Slope (within 200 feet)	LiDAR Elevation (within 200 feet)	LiDAR Slope (within 200 feet)	
Mean: 682	Mean: 9-15%	Mean: 623	Mean: 32 - 40 %	
Minimum: 666	Minimum: 0-5%	Minimum: 587	Minimum: 0 - 15 %	
Maximum: 705	Maximum: 30 - 36 %	Maximum: 695	Maximum: 93 - 177 %	
Relief: 39		Relief: 108		
Points: 13	Show 3-D Elevation Graph	Points: 2,825	Show 3-D Elevation Graph	

Critical Dune Tool Design

Collectively called the *Critical Dune Site* Assessment

 Information provided for and by the user appears in a <u>report</u> and in a user <u>database</u>

Digital Data

- Elevation & Terrain Derivatives LIDAR (2m) vs. NED (30m)
- Land use/ land cover 2002 (sub-acre) vs. 1978 (2.5 acre)

• Soils SSURGO (5 acres) vs. STATSGO(1544 acres)

• Parcels w/PIN for locating and tracking

	Field Site 1	Field Site 2	Field Site 3	
Location	Lake Township, Berrien County	Laketown Township, Allegan County	Spring Lake Township, Ottawa County	
Elevation Data	LIDAR 2-meter, NED 30-meter	NED 30-meter NED 30-m		
Lu/Lc Data	1978, 2002 (shoreline)	1978, 2002 (shoreline)	1978, 2002 (shoreline)	
Soils Data	SSURGO	STATSGO	STATSGO	
Additional Data	Parcels w/PIN	Parcels w/PIN	NA	
Overall Data Quality	High	Medium	Low	

Field Data Collection

- Trimble Pro XRS GPS Unit
- · Compass, w/built in slope indicator
- Soil Auger
- Observation

	Sand OTB	Ctrl. Hardwood	Sgl. Family	Beaches & Riverbanks	
Sand OTB	15	7	0	0	22
Ctrl. Hardwood	4	13	0	0	17
Sgl. Family	0	2	5	0	7
Beaches & Riverbanks	0	1	0	0	1
	19	23	5	0	47
Producer Accuracy	78.95%	56.52%	100.00%	0.00%	1
User Accuracy	68.18%	76.47%	71.43%	0.00%	14
Overall Accuracy	70.21%				1.70

and the second s

Data	Source	County	RMSE	MAE	MAX	MIN
Flevation	LIDAR	Rerrien	1 658	1 182	5 430	0.027
	LIDAK	Derrich	1.050	1.102	5.430	0.027
Elevation	NED	Allegan	17.913	15.092	36.750	-0.354
Slope	LIDAR	Berrien	14.907	9.87	44	-1
Slope	NED	Allegan	27.80	21.61	-67.00	0.00

Conclusions...

- While not yet omitting fieldwork, there is potential for the use of this tool in policy management
 - High resolution data sets are a necessity if the tool is to be used
 - Parcels w/PIN are critical for locating/tracking sites

So, what did I learn?

- There are some steep, yet stable slopes out there
- There is little accountability when it comes to CZM:
 - Not one state employs a database on coastal statistics or resources affected by permits or policies (Bernd-Cohen and Gordon 1999)
 - In Michigan, relatively few sites ever receive follow-up visits

Research shows that Michigan is not alone...

• ALL coastal mangers are overburdened with IMPLEMENTATION...

-the focus is on the current decision processes, not monitoring and evaluating past actions.

• In order for a coastal program to change or improve, program managers must have the <u>time and resources</u> available to evaluate the state of coastal resources

(Bernd-Cohen and Gordon 1999; Hershman et al. 1999)

Thank you all for attention....

And a special thanks to all who helped make this project a success, including Matt Warner (MDEQ), Justin Booth (MSU RS&GIS), and Jeff Schlueter (field assistant).