Several Images from Google Earth were utilized

Nature Based Shoreline Decision Making: Overview of Geology, Driving Forces and Coastal Processes

Peter J. Zuzek, MES, CFM, P.Geo.

Presentation Overview

- I Geology
- II Driving Forces
- III Littoral Cells
- IV Case Studies
- V Questions

Natural

Baird

Developed

Natural

Developed

Natural

Developed

Moveable Structures

Baird

Fixed Foundations

Questions to Consider

 "Manage Erosion" or "Manage Development?"

 "Stabilize Shorelines" or "Restore Dynamic Shoreline Processes?"

I – Geology Matters

St. Lawrence River Bedrock

St. Lawrence River Cohesive River Banks

Sedimentary Bedrock

Know What is Below!

This Leads to That ...

Lakebed Downcutting and Bluff Recession

Lakebed Downcutting and Bluff Recession (armouring fails)

Limited Options ...

Geotech

2013-09

Historical Erosion Rate

Lake Ontario Open Coast Historical Recession Rates

(compiled for the IJC study)

Average Annual Recession Rate (sorted low to high, negative = accretion)

II – Driving Forces

Time Series Results for Nov. 13, 2003

Lake Levels with and without the Dam

November 2003

Lake Ontario Mesh

Sodus Bay

North Sandy Pond

Eastern Lake Ontario

Lake Erie Surge

40 80 Kilometers ADCIRC Storm Surge Model Results for 6 April 1979 Storm

CHS Water Level Gages

Ice Data (NOAA-GLERL)

III – Littoral Cells

Scale 1:1,000,000

Reinders ,1988. Littoral Cell Definition and Sediment Budget for Ontario's Great Lakes.

Image: MODIS 2005 Spatial Reference: UTM 17N NAD 1983 Baird

Littoral Cells

PANEL A: Conceptual Littoral Cell

Littoral Cells

Sediment Transport

Shoreline Trend

Baird

Sandy Profile **Bedrock Profile** Convex Cohesive Profile **Concave Cohesive Profile** LAND Concave Cohesive LST Bedrock LST Headland Sandy I AKF Downdrift Updrift Suppl Depositional Area Area Long Fetch Littoral Cell Boundaries

PANEL B: Longshore Sediment Transport

PANEL C: Long Term Shoreline Trend

Adopted from Davidson-Arnott, 1990

PANEL A: Conceptual Littoral Cell

Scale for Action Plans

Baird

2. New Coastal Zone Management Plans Should Link Watersheds, Shorelines and the Nearshore at the Appropriate Spatial Scales

3. Littoralshed Boundary Links Watersheds, Littoral Cells and the Nearshore Zone

Individual Lakes are Sub-divided into Multiple Littoralsheds for Management/Action Plans

Note: These are conceptual boundaries for illustration only.

Case Study: Elgin County Shoreline Management Plan

SMP for the North Shore of Lake Erie

- Principals: ICZM, EBM, Protect Aquatic and Terrestrial Ecosystems (no impacts)
- No Downdrift Impacts or Cumulative Impacts

Map Published: 2014-08-06

Map Published: 2014-08-06

Panineand R.	3	1 Nortonk St S	Mais 6		55 Rainham Rd
	McDowellRdE Study	n's RdW NG	4 0/2 4 Line F Measure the	Path Pro e distance between two	points on the ground
			Gro	Map Length: ound Length: Heading:	41.23 Kilometers 41.23 41.23 275.57 degrees
TLake Rd	16		Mouse	Navigation	Save Clear
23	42				

Case Study: South Shore Ecological Sediment Budget

Baird with E&E

Potential LST COSMOS Run

- Longshore Sediment Transport (LST) analysis was completed with COSMOS
 - In-house numerical model for the simulation of coastal processes

Supply Limited Conditions

Reach 1067 Cross Shore LST Distribution

0.5

1.5

Notes: 1. Historic imagery from *Eight Miles Along The Shore*, 1982 by Virginia Tomkiewicz and Shirley Cox Husted.
2. Geo-referencing of historic maps is approximate.

Bairc W.F. Baird & Associates

W.F. Baird & Associates

Case Study: Eastern Lake Ontario Sediment Budget

East Lake Ontario (ELO)

Baird

Stony Point: Bedrock Nine Mile: Bedrock

ELO – Sediment Transport

ELO – North Pond

- History of inlet migration
- Significant sink in the ELO system (~40k m³/yr)

ELO – Isostatic Rebound

2.3 mm/yr
Lakebed remains in equilibrium, then the rebounding surface must erode

 Rebound of sand sheet is a significant sediment source in the nearshore

ELO – Conceptual Budget

ELO – Sediment Budget

Note: All values in thousands

V – Questions

Baird

CZC2016·TORONTO WWW.CZCatoronto2016.com