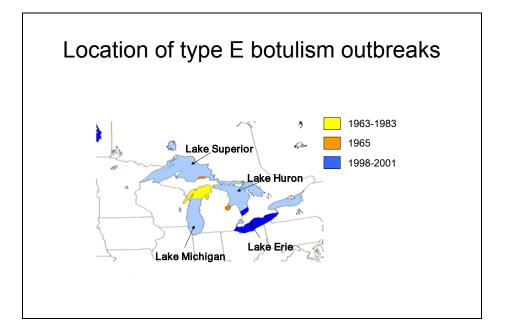
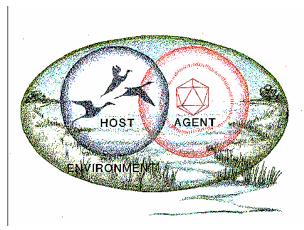
Type E Botulism in the Great Lakes Conference Overview


Grace McLaughlin USGS National Wildlife Health Center

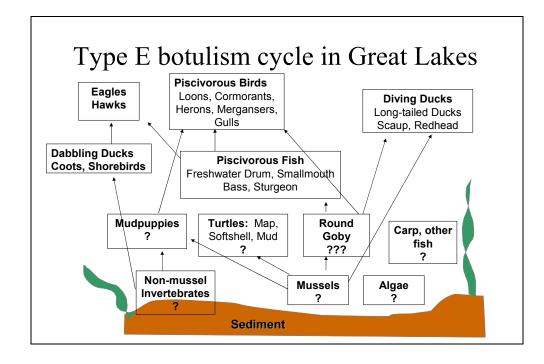
Clostridium botulinum type E

- Spores found primarily in cold water environments (Great Lakes, Baltic Sea)
- Toxin production NOT dependent on a bacteriophage
- Primarily afflicts fish and fish-eating birds
- Causes disease in humans

Type E botulism outbreaks in the Great Lakes


Year	Lake	Number	<u>Species</u>	
1963-1964	Michigan	>12,000	Gulls, Loons	
1976-1983	Michigan, Huron	>1800	Gulls, Loons	
1998-2002	Huron, Michigan	~2500	Mergansers, Gulls, Loons	
1999-2001	Erie	>25,000	Mergansers, Gulls, Loons	
2002	Erie	>25,000	Long-tail ducks, Gulls,	
			Loons, Mergansers,	
			Cormorants	

Locations of other type E outbreaks in birds


- Canche Estuary, France 1996 5-10,000 gulls
- Salton Sea (California) isolated cases pelicans, cormorants
- Alaska isolated cases

Epizootiology of Avian Botulism

Factors involved in avian botulism outbreaks

- Toxigenic bacteria
- Appropriate environmental conditions
- Proper substrate
- Availability of toxin to birds

Research Needs

- Spatiotemporal distribution of type E spores and cells in Great Lake sediments and fish
- Sources of cells and toxin for fish and birds
- Environmental correlates
- Population effects in birds
- Non-avian mortality

Pennsylvania Update 2002

Bob Wellington and Mike Mumau

- March, May dead alewives, turtles
- June dead gobies & mudpuppies less algae than in past years
- July rapid temperature drop $75^\circ \longrightarrow 50^\circ$ F in 2 days
- Monitored water temperature -70° -80°F in July-September, 50°F November
- Invertebrate mortality
- Several invasive species
 - Alewives, gobies
 - Algae (*Cladophora*? If so, long ago.)
 - Invertebrates (mussels, amphipods)
- Blue-green algae blooms
- ~ 2000 fish collected ~ 10 species
 - July 10-11 = 446 (22.3% of total)
- Fewer dead birds than 2001
- Gulls in Summer
- Loons in Fall
- Invertebrates could be substrate for significant toxin production.

New York Update 2002

Don Einhouse

- Fish mortalities effects on trends, abundance
 - March-April: alewives, gizzard shad temperature stress
 - May-June: smelt spawning, *Glugea*
 - June-July: smallmouth bass spawning? upwelling?
 - June-August: warmwater species., upwelling
- June 50% gobies
- July 44% sheepshead
 - Also thousands of mudpuppies
- September mortality: 81% sheepshead
 - Only 4% net (live) samples, yellow perch 40%
 - Why don't yellow perch and gizzard shad die?
- Smallmouth bass survival has not changed with Botulism E
- Forage fish composition
- Gobies
 - 1994 Cleveland
 - 1995 inconclusive numbers
 - 1996 moving East and West in Central basin, into West
 - 1997 into eastern basin
 - 1999 well into NY waters, but low numbers
 - 2000 declining in western basin, including East
 - 2001 huge number in eastern basin
 - 2002 declining in abundance

Sturgeon Mortality

- Rare to find on beach pre-2000
 - 5 in 1996 upwelling
- >25 in 2001
 - Corresponded with high goby numbers
- Fewer in 2002
 - also fewer gobies in trawls

Changes in Food Web

- Shift to gobies post 1998
- Sheepshead eat mussels

Questions:

- Where is anaerobic environment?
 - In anything that dies. Pockets in substrate.
- Benthic fish species absent from kills why?
 - Different susceptibility?
- Role of mussels?
- How to determine botulism E mortality?

NY Avian Mortality

Ken Roblee

- >3000 Gulls in June & July
 - Concurrent with mudpuppy mortality
- October-December estimated >17,000 birds
 - >12,600 long-tailed ducks
 - >2000 loons
 - >1000 mergansers

NY Pathological Investigations

Ward Stone

- 7000+ submissions for botulism in 2003
- First diagnosis of type E 2000
- Food habits: gobies, mudpuppies
- Sheepshead, bass
 - Moribund fish
- Feeding experiments
 - Gobies gull liver
- Toxin identified in gizzard contents
 - Gulls in summer mudpuppies
 - Mergansers mudpuppies, gobies
 - Shorebirds fly larvae from carcasses
 - Long-tailed ducks mussels, gobies
- Few puddle ducks
- Scaup undetermined cause of death

New York Mortality – bird pickup numbers

	2000	2001	2002	Totals
Totals	1100	706	7202	9008
Long-tailed ducks	1	44	4877	4913
Gulls	543	228	>1030	>1800
Red-breasted Merganser	424	16	627	1067
Loons	106	303	434	843

Birds still being collected from 2002-2003 Estimates of dead birds much higher

Food Habits

- Gobies:
 - Loons: 56-61%
 - Horned grebe: 54%
 - Long-tailed Ducks: 60% of 169
- Mudpupppies
 - Gulls 17-82%
 - Mergansers: 20-40%

Feeding Experiments – New York

- Feeding livers assuming problem is botulism toxin, some negative samples used also
- Gobies, Centrarchids, fatheads susceptible
- Yellow Perch and Painted Turtles show some resistance
 - Yellow Perch impaired up to 1 week
 - Altered swimming ability
 - Change in activity patterns

Botulism Type E Genetics

- 10 different type E strains
 - Fish, sediments
- How do these compare to?
 - Other years
 - Huron
 - Michigan
 - Superior

- Mediterranean, Baltic
- France
- Alaska

Canadian Update

Jeff Robinson

- Mortality distribution
- Food habits
- Loon population data
- Experimental dosing
- Loons
 - Believe Stratum 4 breeders
 - Population 19,000 to 40,000 breeding pairs
- Several Lake Erie events
 - June, July, August: gulls, terns, cormorants
 - September: gulls, cormorants
 - October: gulls
 - Late October & November: Common Loons, Long-tailed Ducks, Red-breasted Mergansers
- Lake Huron October
 - Grebes, mergansers, Common Loons
 - Goderich and Port Elgin
- Ontario (not confirmed)

Environmental Parameters Associated with Outbreaks of Botulism in Lake Erie

Alicia Perez-Fuentetaja, Ted Lee, Mark Clapsadl

Identify environmental conditions in Lake Erie associated with presence of *Clostridium botulinum* type E.

Are there areas of low oxygen where the bacteria are found?

10m inshore, 20m offshore depths.

Triplicate samples

Physico-chemical parameters 0.5 m above sediment.

- Algal bloom at time of June-July outbreak
- Oxygen, Redox, pH drop in August
 - Rocke, Samuel JWM
- Weather event in August
 - strong winds, wave action mixing
- Sample processing in progress

Botulism: Atypical Pathogenesis in Other Species

Dr. Robert H. Whitlock, New Bolton Center, University of Pennsylvania

- Cattle
 - Grains oat and rye silage
 - 1 Cat carcass killed 431 of 441 cows
 - Feeding in avian botulism site

- Horses
 - Ravens as vectors from carcasses
 - Wounds castration,
 - drainage contaminated feed
 - 1979 racetrack 30 horses died
- Diagnosis, vaccine, treatment

<u>Botulism in Fish</u>

Getchell, Bowser, et al.

- Rule outs bacteria, viruses, weather (750)
- For Botulism E quantitative PCR
 - Process intestinal contents, liver, etc.
 - Looking for light chain E toxin gene (not toxin)
- Found in sheepshead from July 2001 dieoff
 - Kd, Lv, Sp pool; 3K genome equivalents
- 15-23K genome equivalents GIT contents
 - Only found in very few fish
- 200 148K in bird samples
- What about in healthy fish? No vegetative cells

Fish Susceptibility to Botulism E

Moccia et al.

- Fish Botulism Exposure Model
 - Standardize methods
- Temporal aspects, Sensitivity
 - Trout, goby, perch, walleye, mudpuppy
- Dose-response model
- Toxin titers
 - Tissue distribution
- Methods
 - Dosages to intubate fish
 - Temporal pattern, tissue distribution
 - Calculate up-web transport
- Temporal Observations
 - Restless, agitated, inc. swimming
 - Disequilibrium, altered posture, righting response lost
 - Lethargy interspersed with swimming, lack of coordination
 - Head up/tail down posture, breaching
 - Loss of motor function except respiration
 - Respiratory failure
- Prolonged course
- Altered behavior increased predation risk?
- Tissue distribution?
- Persistence of toxin?