Living Shorelines

Plant Materials Applications

Presented by Chris Miller Manager/Plant Materials Specialist USDA-NRCS Cape May Plant Materials Center

United States Department of Agriculture

Cape May Plant Materials Center

Properly evaluating site conditions

- * Adequate sand supply?
- * Shoreline orientation/shape?
- * Fetch distance/wave height?
- * boat wake?
- * naturally occurring vegetation?
- * salinity concentration?
- * adjacent structural measures?

Site Constraints *3-4 mile fetch *N to E orientation *Straight shoreline *heavy boat traffic *lack of littoral sand

Tidal Species Selection

- Based on salt tolerance and elevation
- Zonation/Hydrology most critical
- Most species require 6-8 hours of direct sunlight during growing season (north facing may be more problematic)

Planting Guidelines

Plant in as dry a condition as possible. Plant on incoming tide.

Plant low marsh with Spartina alterniflora on one-two foot centers

Plant from mean tide to mean high tide.

Use Osmocote slow release fertilizer 18-6-12

In high salt concentrations, plants need to be slowly acclimated to site salinity

Planting-Lessons Learned

- Planting time is about reducing risk
- Optimal planting window: April-June for most herbaceous plants. (exceptionbeachgrass)
- Fall for larger trees and shrubs i.e. plant salvage, large container.

Herbaceous salt tolerance Spartina alterniflora (MLT-MHW); 5-30 ppt Spartina patens (MHW-ULW);5-30 ppt Distichlis spicata (MHW-ULW); 10-30 ppt Spartina pectinata (MHW-ULW; 0-5 ppt Spartina cynosuroides (MHW-ULW); 0-10 ppt Scirpus americanus (MHW-ULW); 0-15 ppt Juncus gerardii (above MHW); 0-30 ppt Panicum virgatum (above ULW); 0-25 ppt Panicum amarulum (above ULW); 0-25 ppt

Spartina alterniflora/patens

'Avalon' Saltmeadow Cordgrass

Distichlis spicata

Giant Cordgrass (Spartina cynosuroides)

Freshwater Cordgrass (Spartina pectinata)

Cape May Plant Center

-Long Island population

American Three-Square (Scirpus americanus)

High Tide Germplasm switchgrass

Native Warm Season Grasses

- Switchgrass plug root development within 3 months.
- Tolerate periods of drought well.
- Deep root system allows for soil/bank reinforcement

'Atlantic' coastal panicgrass (Panicum amarulum)

Coastal Little Bluestem

'Cape' american beachgrass (*Ammophila breviligulata*)

Seaside Goldenrod

Jamaica Bay-Seeding Trials in cooperation with ACOE-New York

Plant Propagation

Plugs-\$29,040/ac.

Qt. Pots- \$145,000/ac.

7.5" deep plugs produced. Cost was \$1.00/plug.

Quart pots produced at \$ 5.00/container

Plug Planting-Season 1 vs Season 2

Low Energy Site

Seeding vs Vegetative Planting

- Advantages of plugs
 - -quick stabilization under high energy. Used quart sized pots in highest energy shoreline fringe
 - Resistant to waterfowl "plucking" if planted by end of June-early July.

Seeding vs Vegetative Planting

- Advantages of Seeding
 - --reduced planting costs, more mechanized
 - -- Cover more area less time
 - --Seed is cheaper than plugs.

Low Energy Site Conditions

- Highest elevation of the daily tidal inundation
- 70 foot wide vegetated buffer in front the planting.

Low Energy Site-Seeding

Sept. 07

July 08

High Energy site conditions

- 25 foot planted buffer of quart pots -Spartina alterniflora.
- Planting in Median tidal range elevation.

High Energy Site

High Energy Site Seeding

September 07

Seed Study Conclusions

- Seeding is a viable option in lower energy environments, particularly in coarse-textured dredge materials.
- In higher energy sites, seed at higher elevation and plant buffer of at least 50 foot of vegetative material.
- High quality seed properly stored and handled is necessary.
- Seedings in high organic soils may have different results.

United States Department of Agriculture

Natural

Service

Resources Conservation

ONRC'

Cape May Plant Materials Center

Proudly Serving the Conservation Plant Needs of Massachusetts, Connecticut, Rhode Island, Coastal New York, New Jersey, Delaware, Maryland, Virginia and North Carolina.

Direct seeding for tidal marsh restoration

Jamaica Bay-Yellow Bar

Integrated Approach for Slope Stabilization

 The integrated approach incorporates soil bioengineering techniques using a combination of woody and herbaceous plant materials in various forms

Factors affecting bluff stabilization

- Surface Water creates rill/gully erosion
- Ground Water creates slumping and slope instability
- Bay Water wave energy creates toe erosion

Traditional Approach-Turfgrass seeding

• Not the best approach for long term sustainability of the site.

Coastal Bluff Stabilization Full sun/Drought tolerant Species

- Bayberry (Morella pensylvanica)
- Dwarf sumac (*Rhus copallina*)
- Sand cherry (*Prunus depressa*)
- Sweetfern (*Comptonia peregrina*)
- Indigobush (Amorpha fruticosa)
- Groundsel (*Baccharis halimifolia*)

- American beachgrass (Ammophila breveligulata)
- Coastal panicgrass
 (*Panicum amarulum*)
- Switchgrass (*Panicum virgatum*)
- Saltmeadow cordgrass
 (Spartina patens)
- Coastal little bluestem (Schizachyrium scoparium var. littorale)

Soil Bioengineering

- Soil Bioengineering: The practice of utilizing plant materials alone in such a way as to perform a structural function of stabilization
- <u>Biotechnical Stabilization</u>: Utilizing a combination of plants, geotextile fabrics, and/or structural measures for stabilization.

Woody Plant Functions Soil Bioengineering Systems

- <u>Root reinforcement</u> root tensile strength mechanically reinforces soil.
- <u>Soil moisture depletion</u> remove excess soil water through evapotranspiration.
- <u>Buttressing and Arching</u> anchored & embedded stems/roots counteract downslope shear forces.
- <u>Flexible stems</u> deflect erosive energy

Vegetative Considerations

Planting Techniques

- Seeding vs vegetative material
- Woody/Herbaceous
- Plant types
 - plugs
 - Dormant unrooted
 - Bare root
 - Containerized
- Caution with invasive plants
 - Lonicera
 - Polygonum
 - Crownvetch

Willow Whips

- 3/8" to 5/8" in diameter
- 4-8 ft. in length
- Cut when dormant
- Nursery grown; same diameter/branching pattern

Pussy Willow

Silky willow

'Ruby' redosier dogwood (*Cornus serecia*)

Developed because of it's prolific layering ability.



Soil Bioengineering Species Limited rooting ability

- Buttonbush (Cephalanthus occidentalis)
- Elderberry (Sambucus canadensis)*
- Ninebark (Physocarpus opulifolia)*
- Arrowwood, Blackhaw (Viburnum spp.)*
- Groundsel (Baccharis halimifolia)
- High Tide bush (Iva frutescens)
- Indigobush (Amorpha fruticosa)
- * indicates shade tolerance

Groundsel Bush

Indigobush (*Amorpha fruticosa*)

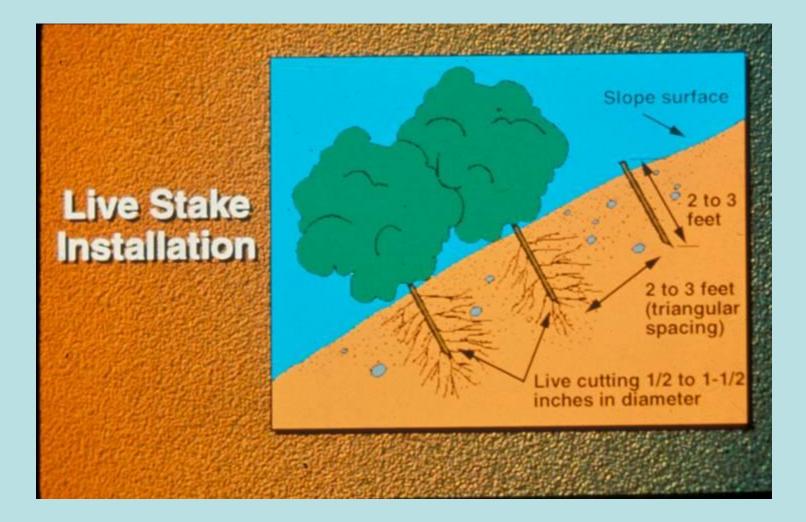
Soil Bioengineering Species Bare root/Containerized

- Alder species (Alnus spp.)*
- Red/Black chokeberry (Aronia spp.)*
- Gray dogwood (Cornus racemosa)*
- Sweet pepperbush (Clethra alnifolia)*
- Winterberry holly (*llex verticillata*)*
- Spicebush (Lindera benzoin)*
- Witch-hazel (Hamamelis virginiana)*
- Highbush blueberry (Vaccinium corymbosum)*
- Bayberry (Morella pensylvanica)
- Dwarf sumac (Rhus copallina)
- Sweetfern (Comptonia peregina)

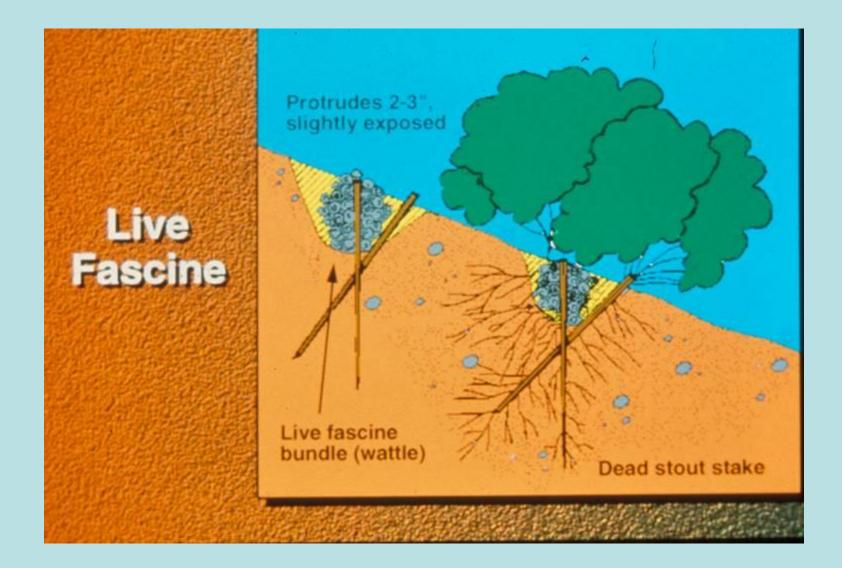
Bayberry

BEACH PLUM: This long-lived native species thrives in environments with salt, apparent drought and frequent disturbances, where their neighbors are often short lived.

Dwarf Sumac (*Rhus copallina*)



Sweetfern (Comptonia peregrina)


Soil Bioengineering

- Utilizes vegetation to provide some structural support to the slope.
- Examples
 - Fascines
 - Brushmattressing
 - Live Staking

A "living" live stake

Other Plant Forms

- Unrooted cuttings
- Bare Root
- Tubelings
- Container

Unrooted Cuttings

- 1/4"-3/8" diameter
- 8"-12" length
- Perform better in moist soils
- May be planted through erosion control fabric

Rooted (bare root) plants

- field dug, bare root
- 3/8" at root collar
- Root gel (Terrasorb) increases survival in higher, drier bank zones
- May be planted though erosion control fabric

Tubelings

Containerized Plants

Plant Materials Costs

Plant Form Unrooted cuttings Live stakes (1-3 ft.) Willow whips (4'-8') Tubelings Bare root (1-0) Container (1-2 gal)

Approximate Cost \$0.45-\$0.75 \$1.00-\$1.50 \$1.00-\$3.00 \$1.25-\$1.75 \$1.00-\$2.00 \$ 3.00-\$12.00

General Bluff Planting Alternatives

- Establish good herbaceous cover then incorporate containerized, bare root, or dormant unrooted shrubs, but no trees
- Plant a few scattered "mother" plants of well adapted shrub species and allow for natural succession due to seed dispersal
- Use the "Vegetative Barriers" approach to slope protection. Plant beachgrass, saltmeadow cordgrass, and/or coastal panicgrass on a tight (6"-8") spacing within a row. Plant 2-3 rows one foot apart
- Soil bioengineering techniques may be used where water may be piping out of the slope.

Herbaceous Plantings of beachgrass/saltmeadow cordgrass

Internet Resources

- USDA-NRCS Plant Materials Program-Atlantic Coastal Restoration: <u>http://plant-</u> <u>materials.nrcs.usda.gov/technical/atlantic_res</u> <u>toration.html</u>
- Cape May Plant Materials Center: http://plant-materials.nrcs.usda.gov/njpmc/index.html
- Dune Restoration FAQ: <u>http://gcuonline.georgian.edu/wootton_l/restor</u> <u>ation.htm</u>

The Time is Now to Act!

