"Living Shorelines" An Historical Perspective from Chesapeake Bay

> C. Scott Hardaway, Jr. Geologist Shoreline Studies Program VIMS

"Living Shorelines" 1970s Referred to as marsh fringe creation

1980sNon-structural approach, MD grant&1990sprogram and VA VEC project

1981 to VA Shoreline Erosion Advisory 1987Service SEAS

Recent moniker: Living Shorelines (2006 by David Burke former head of MD Non-structural program)

Common goal: to apply marsh fringe and/or beach establishment to shore erosion control vs. hardening the coast.

Shoreline Erosion

SCS: Vegetation for Tidal Shoreline Stabilization

Anticipated Results From Vegetative Treatment

Early Research on Marsh Fringe Creation

1970s Knutson and Woodhouse, USCOE reports on marsh creation and wave studies Broome and Seneca, NC coastal marshes Ed Garbisch, MD SCS Cape May Plant Materials Center
1980s Vegetative Erosion Control Project, VA VIMS and DCR (SEAS)

Same result: a fetch limited application

Primary Limiting Parameters

- Fetch
- Shoreline orientation
- Shore geometry
- Nearshore bathymetry
- Boat wakes
- Sunlight (often over looked)

Ecosystem Services: Marshes

VIRGINIA INSTITUTE OF MARINE SCIENCE

Shoreline Erosion

Six typical shoreline profiles around Chesapeake Bay. The stability of the bank face is dependent upon the width and type of shore zone features. Wide beaches/dunes and marsh zones can offer significant wave protection even during storms.

Stable Bank

Erosional Bank

Transitional Bank

Hard Shore Protection Strategies

Hard Shore Protection Strategies

Revetments

Vegetative Erosion Control Project VIMS and SEAS (DCR) 1981-1987

Occahannock Creek VEC Site

Marsh planting along Occahannock Creek, Northampton County, Virginia.

Occahannock Creek marsh plantings after 1 year.

Occahannock Creek marsh planting after 10 years of growth.

Poole VEC Site

Minor bank grading and temporary toe protection utilizing straw bales was used to protect the planted marsh fringe.

Since high water impinged upon the base of the bank, only the intertidal species (*Spartina alterniflora*) was utilized.

After one year.

After six years.

Poole VEC Site

24 years after construction

Lee VEC Site

Lee VEC Site

25 years after construction

VEC Project

 24 sites planted in a variety of shore settings on existing substrate

 Success dependent of 1) fetch 2) shore geomorphology and 3) shore orientation

- Fetch:
 - <1.0 nm, high probability of success;</p>
 - 1-5 nm, low probability, even with maintenance,
 - >5 nm, no probability of success.
- South facing shoreline have better chance.

Management Strategies

This cross-section shows a proposed plan to stabilize a typical eroding shoreline using clean sand to create the appropriate planting area.

Maryland Non-Structural Program

- Over 300 sites installed through grant program
- Program is still active.

RC&D: Dave Wilson and Jerry Walls Maryland DNR: Lin Casanova, Dave Burke, Jordan Loran, Chris Zabawa, Kevin Smith Current personnel: Kevin Smith, Tom Brower, Bhaskar Subramanian

Wye Island

Pre-project shoreline on Wye Island, Kent County, Maryland.

Marsh grass plantings with sand fill and short, stone groins 3 months after installation

4 years after construction.

Wye Island

21 years after construction

Wye Island South-Facing Shore

Loss of fill and shading by previously cut trees caused reduction in marsh fringe.

Wye Island

28 years after construction

Wye Island North-facing Shore

21 years after construction No marsh; too much shade?

Who's been gnawing here?

Jefferson Patterson Park & Museum

October 1986 Pre-project

December 1988

Jefferson Patterson Sill

16 years after construction

Difference between hardening and aspects of a typical coastal profile.

Symbols courtesy of the Integration and Application Network (ian.umces.edu/symbols/), Universit Mafyland Center for Environmental Studies.

An integrated water quality model

Positive = diverse habitat opportunities and improved water quality

Negative = few habitat opportunities and reduced water quality

	Upland Landuse	Riparian Landuse	Banks	Intertidal Zone S	ubaqueous Lands
(+)	Trees, shrubs, tall grass	Trees, shrubs, tall grass	Vegetated, Stable	Marshes, Phragmites	Seagrass (SAV)
			Partial vegetation	Coastal Sand Dunes	Oyster Reefs
	Agriculture	Residential, Agriculture	Undercut	Riprap, Bulkheads	Aquaculture
(-)	Residential, Commerial	Industrial	Bare, Unstable	Boat ramps	Marinas

Typical Living Shoreline Treatment

Elevations & planting widths will vary depending on site conditions. Extent of channelward encroachment depends on extent of landward design.

Typical Cross-sections for Living Shorelines

Typical Cross-sections for Living Shorelines

Webster Field Annex, Maryland Sand fill with stone sills and marsh

before installation

after installation but before planting

after four years

the cross-section used for construction.

St. Mary's City Sill

August 2001

St. Mary's City: Sill with Window

November 2006

The sill at St. Mary's City at low tide depicting two of the access pathways including the sill windows and macro-pores in the sill.

(from Hardaway et al., 2008)

Photos showing a window in the Historic St. Mary's City sill post construction in 2002 and in 2006. The window 9 has a stone revetment along the backshore shown in the planform and cross-sectional design.

(From Hardaway et al., 2008)

1) Plant existing substrate, provide sun.

2) Add sand fill with minimal containment structures such as stone groins, coir logs, etc.)

3) Use stone sills, add sand and plant new marsh.

Define "Level of Protection" 10 year, 25 year???

Mathews County, Virginia

Sill with marsh and pocket beach.

Mathews County, Virginia

Aerial view of entire project which included sills, pocket beach, and revetment to stabilize spit with historic mill.

Ecosystem Services: Beaches

Beaches

- Naturally occurring beaches can provide shore protection if wide and high enough.
- Beach nourishment is a method used to maintain a protective beach.
- In Chesapeake Bay, ongoing beach nourishment projects are usually done in conjunction with some type of securing structure such as groins or breakwaters.
- The use of breakwaters on private property began in 1985.

First Chesapeake Bay Breakwater Project

Installed 1985

Drummond Field; James River June 2005

Drummond Field performance

Luter 2002 James River

Headland Breakwater Systems Assisted Living Shorelines

Luter, Isle of Wright; James River May 2004

Luter, Isle of Wright; James River January 2010

Chesapeake Bay Headland Breakwater Sites

Breakwater Design Guidelines

Maximum Bay **Indentation** : Gap Width

Mb:Gb 1:1.65

Crest Length : Gap Width

1:1.4

Kingsmill on the James

Kingsmill, James River, Virginia

Pre Isabel 21 Aug 2003

Minor scarping of the bank and a loss of vegetation were the major impacts to this site.

Post Isabel 16 Oct 2003

Factory Point and Grandview Nature Preserve

City of Hampton Factory Point

May 2012

VIMS, Gloucester Point, Virginia

Shore

Locally-owned Public Beach VIMS,

East Shore

Tropical Storm Ernesto, September 1, 2006

VIMS Design

VIMS Post-Construction

2010

VIMS East Shore

Feb 2013

Sep 2012

VIMS West Shore

VIMS West Shore

VIMS West Shore

After Construction

Summary: Marshes

 \cdot As fetch exposure increases so does the marsh width and elevation needed to attenuate wave action.

•At some point (> 0.5 nm fetch) a sill may be needed for long term marsh fringe stabilization.

 Marshes can provide long term protection if properly maintained.

•A large data base of marsh sites exists around the Bay along with various brochures and reports to support the Living Shoreline concept.

• This historical site data allows us to proclaim that shore erosion control can be achieved by creating *Living Shorelines* (*i.e. marsh fringes*).

Summary: Beaches

•Beaches are generally more suitable for greater fetch exposures > 1 nm.

•In Chesapeake Bay, maintaining a stable, wide protective beach requires:

some type of breakwater (s),
ongoing beach nourishment
or some combination.

P:\32213.00\cad\eviplanset\DALTON POINT\32213-DALTON-LM.dwg

P:32213.00/cad/eviplanset/DALTON POINT/32213-DALTON-LM.dwg

THE END

St. Mary's City Cobble in window to reduce scour

November 2006

St. Mary's Sill Small granite revetment in window

November 2006

